如何構(gòu)建一個(gè) CNN 模型,以從圖像中對(duì)幼苗的種類進(jìn)行分類?
介紹本文將學(xué)習(xí)和構(gòu)建一個(gè) CNN 模型,以從圖像中對(duì)幼苗的種類進(jìn)行分類。該數(shù)據(jù)集有12組圖像,我們的最終目的是從圖像中對(duì)植物物種進(jìn)行分類。
我們將執(zhí)行多個(gè)步驟,例如導(dǎo)入庫(kù)和模塊、讀取圖像并調(diào)整它們的大小、圖像清理、圖像預(yù)處理、模型構(gòu)建、模型訓(xùn)練、減少過(guò)度擬合,最后對(duì)測(cè)試數(shù)據(jù)集進(jìn)行預(yù)測(cè)。
目錄
問題陳述
導(dǎo)入庫(kù)
獲取數(shù)據(jù)并調(diào)整圖像大小
清理圖像并去除背景
將標(biāo)簽轉(zhuǎn)換為數(shù)字
定義我們的模型并拆分?jǐn)?shù)據(jù)集
防止過(guò)擬合
定義卷積神經(jīng)網(wǎng)絡(luò)
將 CNN 擬合到數(shù)據(jù)上
混淆矩陣
獲得預(yù)測(cè)
問題陳述
該數(shù)據(jù)集由奧爾胡斯大學(xué)信號(hào)處理小組提供。這是一個(gè)典型的圖像識(shí)別問題陳述。我們提供了一個(gè)圖像數(shù)據(jù)集,其中包含處于不同生長(zhǎng)階段的植物照片。每張照片都有其唯一的 ID 和文件名。
該數(shù)據(jù)集包含來(lái)自 12 個(gè)植物物種的 960 種獨(dú)特植物。最終目標(biāo)是構(gòu)建一個(gè)能夠從照片中確定植物種類的分類器。
物種列表
Black-grass
Charlock
Cleavers
Common Chickweed
Common wheat
Fat Hen
Loose Silky-bent
Maize
Scentless Mayweed
Shepherds Purse
Small-flowered Cranesbill
Sugar beet
導(dǎo)入庫(kù)
首先導(dǎo)入所有必要的庫(kù)以供我們進(jìn)一步分析。我們將使用 NumPy、Pandas、matplotlib、OpenCV、Keras 和 sci-kit-learn。
檢查以下命令以導(dǎo)入所有必需的庫(kù)
import numpy as np # MATRIX OPERATIONS
import pandas as pd # EFFICIENT DATA STRUCTURES
import matplotlib.pyplot as plt # GRAPHING AND VISUALIZATIONS
import math # MATHEMATICAL OPERATIONS
import cv2 # IMAGE PROCESSING - OPENCV
from glob import glob # FILE OPERATIONS
import itertools
# KERAS AND SKLEARN MODULES
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import BatchNormalization
from keras.callbacks import ModelCheckpoint,ReduceLROnPlateau,CSVLogger
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
# GLOBAL VARIABLES
scale = 70
seed = 7
獲取數(shù)據(jù)并調(diào)整圖像大小
為了訓(xùn)練我們的模型,我們需要先讀取數(shù)據(jù)。我們的數(shù)據(jù)集有不同大小的圖像,因此我們將調(diào)整圖像的大小。讀取數(shù)據(jù)并調(diào)整其大小只需一步即可完成。查看以下代碼以獲取有關(guān)如何執(zhí)行不同操作的完整信息。path_to_images = 'plant-seedlings-classification/train/png'
images = glob(path_to_images)
trainingset = []
traininglabels = []
num = len(images)
count = 1
#READING IMAGES AND RESIZING THEM
for i in images:
print(str(count)+'/'+str(num),end='r')
trainingset.a(chǎn)ppend(cv2.resize(cv2.imread(i),(scale,scale)))
traininglabels.a(chǎn)ppend(i.split('/')[-2])
count=count+1
trainingset = np.a(chǎn)sarray(trainingset)
traininglabels = pd.DataFrame(traininglabels)
清理圖像并去除背景
這是執(zhí)行清理的一個(gè)非常重要的步驟。清理圖像是一項(xiàng)艱巨的任務(wù)。我們將執(zhí)行以下步驟以清理圖像
將 RGB 圖像轉(zhuǎn)換為 HSV
為了去除噪聲,我們將不得不模糊圖像
為了刪除背景,我們將不得不創(chuàng)建一個(gè)遮罩。new_train = []
sets = []; getEx = True
for i in trainingset:
blurr = cv2.GaussianBlur(i,(5,5),0)
hsv = cv2.cvtColor(blurr,cv2.COLOR_BGR2HSV)
#GREEN PARAMETERS
lower = (25,40,50)
upper = (75,255,255)
mask = cv2.inRange(hsv,lower,upper)
struc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(11,11))
mask = cv2.morphologyEx(mask,cv2.MORPH_CLOSE,struc)
boolean = mask>0
new = np.zeros_like(i,np.uint8)
new[boolean] = i[boolean]
new_train.a(chǎn)ppend(new)
if getEx:
plt.subplot(2,3,1);plt.imshow(i) # ORIGINAL
plt.subplot(2,3,2);plt.imshow(blurr) # BLURRED
plt.subplot(2,3,3);plt.imshow(hsv) # HSV CONVERTED
plt.subplot(2,3,4);plt.imshow(mask) # MASKED
plt.subplot(2,3,5);plt.imshow(boolean) # BOOLEAN MASKED
plt.subplot(2,3,6);plt.imshow(new) # NEW PROCESSED IMAGE
plt.show()
getEx = False

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
6月20日立即下載>> 【白皮書】精準(zhǔn)測(cè)量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬(wàn) APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語(yǔ)權(quán)
- 3 深度報(bào)告|中國(guó)AI產(chǎn)業(yè)正在崛起成全球力量,市場(chǎng)潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級(jí)獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 國(guó)家數(shù)據(jù)局局長(zhǎng)劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰(shuí)在領(lǐng)跑?
- 9 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過(guò)于簡(jiǎn)單
- 10 “搶灘”家用機(jī)器人領(lǐng)域,聯(lián)通、海爾、美的等紛紛入局