人工智能之隨機(jī)森林(RF)
通過(guò)上一篇文章《人工智能之決策樹(shù)》,我們清楚地知道決策樹(shù)(DT)是一類常見(jiàn)的機(jī)器學(xué)習(xí)方法。決策樹(shù)(DT)在人工智能中所處的位置:人工智能-->機(jī)器學(xué)習(xí)-->監(jiān)督學(xué)習(xí)-->決策樹(shù)。決策樹(shù)主要用來(lái)解決分類和回歸問(wèn)題,但是決策樹(shù)(DT)會(huì)產(chǎn)生過(guò)擬合現(xiàn)象,導(dǎo)致泛化能力變?nèi)?/strong>。過(guò)擬合是建立決策樹(shù)模型時(shí)面臨的重要挑戰(zhàn)之一。鑒于決策樹(shù)容易過(guò)擬合的缺點(diǎn),由美國(guó)貝爾實(shí)驗(yàn)室大牛們提出了采用隨機(jī)森林(RF)投票機(jī)制來(lái)改善決策樹(shù)。隨機(jī)森林(RF)則是針對(duì)決策樹(shù)(DT)的過(guò)擬合問(wèn)題而提出的一種改進(jìn)方法,而且隨機(jī)森林(RF)是一個(gè)最近比較火的算法。因此有必要對(duì)隨機(jī)森林(RF)作進(jìn)一步探討。^_^
隨機(jī)森林(RF)在人工智能中所處的位置:人工智能-->機(jī)器學(xué)習(xí)-->監(jiān)督學(xué)習(xí)-->決策樹(shù)-->隨機(jī)森林。
隨機(jī)森林(RF)指的是利用多棵樹(shù)對(duì)樣本進(jìn)行訓(xùn)練并預(yù)測(cè)的一種分類器。該分類器最早由Leo Breiman和Adele Cutler提出,并被注冊(cè)成了商標(biāo)。
那么什么是隨機(jī)森林?
隨機(jī)森林(RandomForests)是一個(gè)包含多個(gè)決策樹(shù)的分類器,并且其輸出的類別是由個(gè)別樹(shù)輸出的類別的眾數(shù)而定。Leo Breiman和Adele Cutler發(fā)展并推論出隨機(jī)森林的算法。隨機(jī)森林(RF)這個(gè)術(shù)語(yǔ)是1995年由貝爾實(shí)驗(yàn)室的Tin Kam Ho所提出的隨機(jī)決策森林(random decision forests)而來(lái)的。這個(gè)方法則是結(jié)合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造決策樹(shù)的集合。
通過(guò)定義我們知道,隨機(jī)森林(RF)要建立了多個(gè)決策樹(shù)(DT),并將它們合并在一起以獲得更準(zhǔn)確和穩(wěn)定的預(yù)測(cè)。隨機(jī)森林的一大優(yōu)勢(shì)在于它既可用于分類,也可用于回歸問(wèn)題,這兩類問(wèn)題恰好構(gòu)成了當(dāng)前的大多數(shù)機(jī)器學(xué)習(xí)系統(tǒng)所需要面對(duì)的。
隨機(jī)森林是集成學(xué)習(xí)的一個(gè)子類,它依靠于決策樹(shù)的投票選擇來(lái)決定最后的分類結(jié)果。集成學(xué)習(xí)通過(guò)建立幾個(gè)模型組合的來(lái)解決單一預(yù)測(cè)問(wèn)題。集成學(xué)習(xí)的簡(jiǎn)單原理是生成多個(gè)分類器/模型,各自獨(dú)立地學(xué)習(xí)和作出預(yù)測(cè)。這些預(yù)測(cè)最后結(jié)合成單預(yù)測(cè),因此優(yōu)于任何一個(gè)單分類的做出預(yù)測(cè)。
隨機(jī)森林的構(gòu)建過(guò)程:
假設(shè)N表示訓(xùn)練用例(樣本)個(gè)數(shù),M表示特征數(shù)目,隨機(jī)森林的構(gòu)建過(guò)程如下:
1) 輸入特征數(shù)目m,用于確定決策樹(shù)上一個(gè)節(jié)點(diǎn)的決策結(jié)果;其中m應(yīng)遠(yuǎn)小于M。
2) 從N個(gè)訓(xùn)練用例(樣本)中以有放回抽樣的方式,取樣N次,形成一個(gè)訓(xùn)練集,并用未抽到的用例(樣本)作預(yù)測(cè),評(píng)估其誤差。
3) 對(duì)于每一個(gè)節(jié)點(diǎn),隨機(jī)選擇m個(gè)特征,決策樹(shù)上每個(gè)節(jié)點(diǎn)的決定都是基于這些特征確定的。根據(jù)m個(gè)特征,計(jì)算其最佳的分裂方式。
4) 每棵樹(shù)都會(huì)完整成長(zhǎng)而不會(huì)剪枝,這有可能在建完一棵正常樹(shù)狀分類器后會(huì)被采用。
5) 重復(fù)上述步驟,構(gòu)建另外一棵棵決策樹(shù),直到達(dá)到預(yù)定數(shù)目的一群決策樹(shù)為止,即構(gòu)建好了隨機(jī)森林。
其中,預(yù)選變量個(gè)數(shù)(m)和隨機(jī)森林中樹(shù)的個(gè)數(shù)是重要參數(shù),對(duì)系統(tǒng)的調(diào)優(yōu)非常關(guān)鍵。這些參數(shù)在調(diào)節(jié)隨機(jī)森林模型的準(zhǔn)確性方面也起著至關(guān)重要的作用?茖W(xué)地使用這些指標(biāo),將能顯著的提高隨機(jī)森林模型工作效率。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
6月20日立即下載>> 【白皮書(shū)】精準(zhǔn)測(cè)量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬(wàn) APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語(yǔ)權(quán)
- 3 深度報(bào)告|中國(guó)AI產(chǎn)業(yè)正在崛起成全球力量,市場(chǎng)潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級(jí)獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 國(guó)家數(shù)據(jù)局局長(zhǎng)劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰(shuí)在領(lǐng)跑?
- 9 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過(guò)于簡(jiǎn)單
- 10 一文看懂視覺(jué)語(yǔ)言動(dòng)作模型(VLA)及其應(yīng)用