IJCA2019公開協(xié)調(diào)ADAS新方法:隨機(jī)對(duì)抗性模仿學(xué)習(xí)
2019年5月13日,國(guó)際人工智能聯(lián)合會(huì)議(IJCAI)2019發(fā)布了一篇題為Randomized Adversarial Imitation Learning的論文。該文介紹了一種基于自動(dòng)駕駛的隨機(jī)對(duì)抗性模仿學(xué)習(xí)(Randomized Adversarial Imitation Learning,RAIL)。該方法模擬了配備先進(jìn)傳感器的自動(dòng)駕駛汽車的協(xié)調(diào)過程,通過自由派生優(yōu)化決策系統(tǒng)進(jìn)而協(xié)調(diào)諸如智能巡航控制(SCC)和車道保持(LKS)等ADAS功能。值得一提的是,該方法在復(fù)雜的多車道高速公路和多智能體環(huán)境下,可以處理激光雷達(dá)數(shù)據(jù)并進(jìn)行決策。
在多車道高速公路環(huán)境中,安全事故往往會(huì)導(dǎo)致道路擁堵或發(fā)生更嚴(yán)重的交通事故,F(xiàn)代自動(dòng)駕駛中呈現(xiàn)的各種ADAS功能具有高度的相互依賴性,需要將其看成一個(gè)單一的綜合體,需要在保證安全的同時(shí),形成長(zhǎng)期有效的輔助策略顯得尤為重要。本文介紹了一種基于自動(dòng)駕駛的隨機(jī)對(duì)抗性模仿學(xué)習(xí)(Randomized Adversarial Imitation Learning,RAIL)。該方法模擬了配備先進(jìn)傳感器的自動(dòng)駕駛汽車的協(xié)調(diào)過程,通過自由派生優(yōu)化決策系統(tǒng)進(jìn)而協(xié)調(diào)諸如智能巡航控制(SCC)和車道保持(LKS)等ADAS功能。值得一提的是,該方法在復(fù)雜的多車道高速公路和多智能體環(huán)境下,可以處理激光雷達(dá)數(shù)據(jù)并進(jìn)行決策。
基于自動(dòng)駕駛的隨機(jī)對(duì)抗性模仿學(xué)習(xí)(RAIL)法表明,在政策參數(shù)空間內(nèi)的隨機(jī)搜索可以適用于自動(dòng)駕駛政策的模仿學(xué)習(xí)。具體貢獻(xiàn)如下:
(1) 自駕駛機(jī)制是在模仿學(xué)習(xí)的啟發(fā)下提出的,RAIL方法可以成功地模擬專業(yè)駕駛表現(xiàn);相應(yīng)的靜態(tài)和線性策略可以以相近的速度完成多次換道和超車。
(2) 傳統(tǒng)的模擬學(xué)習(xí)方法對(duì)自動(dòng)駕駛的控制結(jié)構(gòu)復(fù)雜。相比而言,RAIL方法是基于無派生的隨機(jī)搜索,該方法更加簡(jiǎn)單。
(3) RAIL方法開創(chuàng)了應(yīng)用于自主駕駛魯棒駕駛策略的學(xué)習(xí)先河。
圖1 車輛控制系統(tǒng)的簡(jiǎn)化學(xué)習(xí)層次
先來看一下傳統(tǒng)的自動(dòng)駕駛汽車的系統(tǒng)層次結(jié)構(gòu)(如圖1),底層的ADAS控制器直接連接到無人駕駛汽車的激光雷達(dá)傳感器?刂破鞔_定控制車輛所需的信息,并將已經(jīng)決策好的操作傳遞給機(jī)械部件。作為一個(gè)單一的集成系統(tǒng),最好有多個(gè)ADAS功能同時(shí)協(xié)作來控制車輛的系統(tǒng)運(yùn)行。
研究動(dòng)機(jī):在多車道高速公路等有限條件下,主系統(tǒng)通過協(xié)調(diào)ADAS功能,實(shí)現(xiàn)汽車的自動(dòng)駕駛。由于車輛本身與周圍其他車輛、車道或者環(huán)境相互作用、互相交互,通過攝像頭或雷達(dá)等監(jiān)視器,主系統(tǒng)并不能獲取車輛周圍完整的環(huán)境狀態(tài),只能使用部分局部可見信息。因此,RAIL方法首先將監(jiān)測(cè)代理器建模為一個(gè)(O,A,T,R, γ)數(shù)組,該數(shù)組表示一個(gè)部分可見的馬爾可夫決策過程,其中包含對(duì)自動(dòng)駕駛的連續(xù)觀察和動(dòng)作,還有激光雷達(dá)數(shù)據(jù)的部分觀測(cè)狀態(tài),用O表示。
狀態(tài)空間:RAIL使用激光雷達(dá)傳感器發(fā)射的N條光束均勻地分布在視場(chǎng)上[wmin,wmax]獲取的數(shù)據(jù)完成矢量觀測(cè)。每個(gè)傳感器數(shù)據(jù)有最大范圍rmax,傳感器返回它遇到的第一個(gè)障礙物與車輛之間的距離,如果沒有檢測(cè)到障礙物,則返回rmax。然后,數(shù)值表示為O=(O1, . . . , ON)。進(jìn)而,根據(jù)距離數(shù)據(jù),可以計(jì)算出障礙物與車輛之間的相對(duì)速度Vr = (V1,…VN)。
操作空間:該策略是一個(gè)高層次的決策者,通過對(duì)高速公路的觀察來確定最優(yōu)的行動(dòng)。假設(shè)自動(dòng)駕駛汽車?yán)昧薃DAS功能,因此,驅(qū)動(dòng)策略的操作激活了每個(gè)ADAS功能。驅(qū)動(dòng)策略定義在離散的動(dòng)作空間。高層次決策可以分解為以下5個(gè)步驟:(1)保持當(dāng)前狀態(tài);(2)加速速度為velcur+velacc;(3)減速速度為velcur-veldec;(4)左轉(zhuǎn);(5)右轉(zhuǎn)。以上操作通過自動(dòng)緊急制動(dòng)(AEB)和自適應(yīng)巡航控制(ACC)完成。
圖2 RAIL結(jié)構(gòu)
RAIL主要是是增強(qiáng)傳統(tǒng)的ARS和GAIL算法。RAIL旨在培訓(xùn)駕駛決策,模仿專業(yè)司機(jī)的規(guī)范操作。汽車被認(rèn)為是一個(gè)代理策略πθ,在多車道高速公路上,車輛收集數(shù)據(jù)后生成小值隨機(jī)噪聲矩陣。該代理根據(jù)生成的噪聲策略與環(huán)境進(jìn)行多次交互,并將結(jié)果收集為樣本軌跡。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
最新活動(dòng)更多
-
6月20日立即下載>> 【白皮書】精準(zhǔn)測(cè)量 安全高效——福祿克光伏行業(yè)解決方案
-
7月3日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 大廠紛紛入局,百度、阿里、字節(jié)搶奪Agent話語(yǔ)權(quán)
- 3 深度報(bào)告|中國(guó)AI產(chǎn)業(yè)正在崛起成全球力量,市場(chǎng)潛力和關(guān)鍵挑戰(zhàn)有哪些?
- 4 上海跑出80億超級(jí)獨(dú)角獸:獲上市公司戰(zhàn)投,干人形機(jī)器人
- 5 國(guó)家數(shù)據(jù)局局長(zhǎng)劉烈宏調(diào)研格創(chuàng)東智
- 6 下一代入口之戰(zhàn):大廠為何紛紛押注智能體?
- 7 百億AI芯片訂單,瘋狂傾銷中東?
- 8 Robotaxi新消息密集釋放,量產(chǎn)元年誰在領(lǐng)跑?
- 9 格斗大賽出圈!人形機(jī)器人致命短板曝光:頭腦過于簡(jiǎn)單
- 10 “搶灘”家用機(jī)器人領(lǐng)域,聯(lián)通、海爾、美的等紛紛入局